
MODELING AND MEASURING THE 
POLARIZATION OF LIGHT:  
FROM JONES MATRICES TO ELLIPSOMETRY 
OVERALL GOALS 

The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results.  It is 
not your job to understand every aspect of the theory, but rather to understand it well enough to make 
predictions in a variety of experimental situations.  The model developed in this lab will have parameters that are 
easily experimentally adjustable.  Additionally, you will refine your predictive models by accounting for systematic 
error sources that occur in the apparatus.  The overarching goals for the lab are to: 

• Model the vector nature of light.  (Week 1) 
• Model optical components that manipulate polarization (e.g., polarizing filters and quarter-wave plates).  

(Week 1)  
• Measure a general polarization state of light. (Week 1) 
• Model and measure the reflection and transmission of light at a dielectric interface.  (Week 2) 
• Perform an ellipsometry measurement on a Lucite surface. 

WEEK 1 

PRELIMINARY OBSERVATIONS 

 

Question 1 Set up the optical arrangement shown in Figure 1.  It consists of (1) a laser, (2) Polarizing 
filters, (3) A quarter-wave plate (4) A photodetector.  Observe the variation in the 
photodetector voltage as you rotate the polarizing filters and/or quarter-wave plate.   

This is as complicated as the apparatus gets.  The challenge of week 1 is to build accurate models of these 
components and model their combined effect in an optical system.  An understanding of polarized light and 
polarizing optical elements forms the foundation of many optical applications including AMO experiments such as 
magneto-optical traps, LCD displays, and 3D projectors. 



 

Figure 1: Diagram of a scheme for the measurement of elliptical polarization parameters and the creation of circularly polarized light. 

 

INTRODUCTION 

Light is a propagating oscillation of the electromagnetic field.  The general principles that govern electromagnetic 
waves are Maxwell's equations.  From these general relations, a vector wave equation can be derived. 

 ∇!𝑬##⃗ = 𝜇"𝜖"
𝜕!𝑬##⃗
𝜕𝑡!  (1) 

One of the simplest solutions is that of a plane wave propagating in the 𝒛+ direction is 

 𝑬##⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 𝐸#𝒙4 cos(𝜔𝑡 − 𝑘𝑧 + 𝜙#) + 𝐸$𝒚4	cos?𝜔𝑡 − 𝑘𝑧 + 𝜙$@ (2) 

Where 𝐸# and 𝐸$ are the electric field magnitudes of the 𝑥-polarization and 𝑦-polarization, 𝜔 = 2𝜋𝑓 is the angular 
frequency of the oscillating light wave, 𝑘 = 2𝜋 𝜆⁄  is the wave-number, and 𝜙# and 𝜙$ are phase shifts.  

Question 2  Use complex exponential notation to express the plane wave shown in Eq. 2.  The real part of 
this complex expression should match Eq. 2. 

Most of our other optics labs assume that light is a scalar field, and obeys a scalar wave equation,  ∇!𝐸 = 𝜇"𝜖"
%!&
%'!

, 

but the whole point of this lab is to model and measure the vector nature of light.    

Question 3  Reflect.   What experiments and other optics phenomena have you studied in the lab?  Did 
these use a scalar model of light or a vector model? 

EXPERIMENT: DETERMINING POLARIZATION OF YOUR LASER 

One of the most basic polarization optics is the polarizing filter.  An ideal polarizing filter absorbs 100% of one 
polarization and transmits 100% of an orthogonal polarization.  For now we will assume the polarizing filters you 
have in lab are ideal.  Later in the lab we will experimentally develop a model for non-ideal filters which are closer 
to what we have in lab. 



Question 4  
 
 

Given three things: (1) a laser, (2) a polarizing filter, and (3) and a photodiode:   
 

a. Design and carry out a quick experiment to determine if the light emitted by your 
laser has a well-defined polarization.  

b. Design and carry out a quick experiment to determine if your photodiode responds 
equally well to all polarizations of light. 

 

MODELING THE POLARIZATION OF LIGHT WITH JONES VECTORS 

If we look back at Eq. (2) we see that only free parameters describing the electric field of a plane wave are the two 
electric field amplitudes 𝐸# and 𝐸$, and the phases 𝜙# and 𝜙$.  In fact, based on your answer to Question 2, it is 
possible to rewrite the complex exponential form for the electric field as 

 𝑬##⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 𝐸"𝑒((*'+,-)Gcos 𝜃	𝑒(/"𝒙4 + sin 𝜃	𝑒(/#𝒚4K (3) 

 

Question 5  Show that Eq. (3) follows from your answer to Question 2.  Find 𝐸", and 𝜃 in terms of 𝐸# and 
𝐸$. 

The only thing that is different between different states of polarized light are the complex valued coefficients in 
front of 𝒙4 and 𝒚4. In the experiments we are doing this week, we are not concerned with the direction the light is 
propagating, or the spatial shape of the beam, or the wavelength.  If we strip away all the extraneous details of 
Eqs. (2) and (3), we can write the polarization state of light as a 2x1 vector. 

 𝐸"𝑒((*'+,-)Gcos 𝜃	𝑒(/"𝒙4 + sin 𝜃	𝑒(/#𝒚4K → Mcos 𝜃 𝑒
(/"

sin 𝜃	𝑒(/#
N (4) 

So, for example, for light polarized purely in 𝒙4  or 𝒚4 we get 

 𝒙4 ⟶ P10S 	and	𝒚4 ⟶ P01S	  
(5) 

These are the two basis polarization states in the Jones matrix notation.  Throughout this lab you will be 
developing the mathematical and computational representations for a model of polarized light based on the Jones 
Formalism.1   

Question 6 
Suppose two beams of light of different polarization M

𝐸#
𝐸$N and V

𝐸′#
𝐸′$

X  are being combined 

using a beam splitter. The Jones matrix formalism suggests that the final polarization state 

after a 50/50 beamsplitter would be proportional to V
𝐸# + 𝐸′#
𝐸$ + 𝐸′$

X.  Under what experimental 

conditions would this use of the Jones formalism be valid, meaning it would accurately 
describe the final polarization state of the light?   

Question 7  Write a Jones vector in the form of Eq. (4) for linearly polarized light with a polarization angle 
45 degrees between 𝒙4 and 𝒚4. 



CONSTRUCTING AND REFINING A MODEL OF A POLARIZING FILTER USING THE JONES 
FORMALISM 

The next few questions will lead us through describing optical components that take a polarization state and turn it 
into a different polarization state.  All of these components can be described by 2x2 matrices.  

An ideal polarizer oriented along the 𝑥-axis keeps the 𝒙4-component unchanged, while the 𝒚4-component vanishes 
because it is not transmitted.  Or in the formalism of Jones 

 Mcos 𝜃 𝑒
(/"

sin 𝜃	𝑒(/#
N ⟶ Mcos 𝜃 𝑒

(/"

0
N 

 
(6) 

Question 8 Do a little research in order to explain the basic physics ideas for why the polarizing filter only 
absorbs one polarization. 

Question 9  
 

a. Find the coefficients 𝑎, 𝑏, 𝑐, and 𝑑 of a 2x2 matrix Px which describes the behavior of 
an ideal polarizing filter which transmits only the 𝒙4-polarization as given in Eq. (6), so 

that  Mcos 𝜃 𝑒
(/"

0
N = 𝑃# Mcos 𝜃 𝑒

(/"

sin 𝜃	𝑒(/#
N = P𝑎 𝑏

𝑐 𝑑S M
cos 𝜃 𝑒(/"
sin 𝜃	𝑒(/#

N . 

b. What is the physical meaning of the diagonal elements 𝑎 and 𝑑?  What is the physical 
meaning of the off-diagonal elements 𝑐 and 𝑏?  

c. Our actual polarizer is probably not ideal.  It doesn’t transmit 100% of any 
polarization, and probably lets a little bit of the orthogonal polarization through.  But 
it probably doesn’t transform much light from one polarization into another. So which 
coefficients in the matrix should we keep to model our polarizer? 

Question 10 
 

Experiment: Refining the idealized model of a polarizing filter to be more realistic. 
 
The ideal polarizing filter transmits 100% of one polarization and 0% of the orthogonal 
polarization.  Is this a good model of the real polarizing sheets we are using in the lab? 

a. Design and carry out an experiment to measure the maximum and minimum 
transmission coefficients and construct a more realistic model of the polarizer. 

b. Write a matrix for a more realistic model of the non-ideal polarizing filter measured in 
(a). 

c. Do the polarizing filter characteristics depend on where on the sheet the laser strikes 
the polarizer? 

Hint: The power in a optical beam 𝑃01' is proportional to the square of the electric field 

magnitude, 𝑃01' ∝ _𝐸#⃗ _
!
= `M

𝐸#
𝐸$N`

!
= |𝐸#|! + _𝐸$_

!
. 

 

 

MALUS'S LAW – AN EXPERIMENTAL TEST OF OUR MODEL OF LIGHT AND POLARIZING 
FILTERS. 

Malus's law says the fraction of linearly polarized light transmitted through an ideal polarizer is 𝐼'2345 = 𝐼" cos! 𝜃, 
where 𝜃 is the angle between the incident polarization and the transmitting axis of the polarizer. 

Question 11 Briefly explain the basic physics of Malus's law. It is fine to consult a textbook. 



If our model of the polarization of light and model of the polarizing filter are a good description, then we should be 
able to use this model to derive Malus's law in the case of non-ideal polarizing filters.  This section will lead you 
through this modeling exercise. 

Briefly, a rotation matrix by an angle theta can be written as  

 𝑅(𝜃) = P cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃S (7) 

This matrix can be used to rotate a polarization state, or to rotate an optical element.  It will probably be helpful to 
write express these matrices as functions in Mathematica, which would look like  

r[th_]:={{Cos[th], Sin[th]}, {-Sin[th],Cos[th]}} 

A polarizing filter matrix which transmits 𝒙4, 𝑃# that is rotated by an angle 𝜃, the rotated polarizer has a matrix 
given by  

 𝑃(𝜃) = 𝑅(𝜃)𝑃#𝑅(−𝜃) (8) 

If you want more details on defining functions in Mathematica , there is a YouTube screencast2 and a Wolfram 
tutorial3 available.  Mathematica also has many capabilities for handling vectors and matrices, which are 
documented in the built-in help or on the Wolfram website.4   In particular, a vector can be represented as a = 
{a1,a2}, a matrix can be represented by b = {{b11, b12}, {b21, b22}}.  Also, the “dot” operator (a 
period) is used for multiplication between matrices and other matrices, like b.b, and matrices and vectors, like 
b.a. 

Question 12 Using the Jones formalism to predict Malus’ law will give you confidence in more complicated 
models, like those that include the quarter-wave plate. 
 

a. Express in Mathematica the matrix 𝑃(𝜃) for an ideal polarizing filter at an angle 𝜃. 
Does 𝑃(𝜃 = 90°) agree with what you expect?  

b. Use the Jones formalism computational model to predict the transmission between 
two successive polarizing filters oriented at angles differing by 𝜃.  Does it agree with 
Malus’ Law, i.e. 𝑃'2345 = 𝑃(46 cos! 𝜃?  
 

Question 13 Experimentally test your model of Malus's law using non-ideal polarizers.   Do you get 
agreement within measurement uncertainties? 
 

 

MODELING A QUARTER-WAVE PLATE WITH JONES MATRICES 

A quarter-wave plate is an optic that transmits both orthogonal polarizations, but the index of refraction is 
different for the two polarizations.  So although they traverse the same physical length, one polarization travels 
more slowly than the other, and exits the quarter-wave plate with a slightly different phase.  Mathematically, we 
can write a matrix 𝑀789 describing the ideal QWP as 

 𝑀789 = M𝑒
(:/! 0
0 1

N (9) 



It is almost the same as the identity matrix, but for a quarter-wave plate the 𝒙4-polarization exits with an additional 
𝜋/2 phase shift relative to the 𝒚4-polarization.  One common application is for creating circularly polarized light. 

Question 14 
 

The quarter-wave plate is made of a crystal, commonly quartz.   
a. What is the difference between the molecular structure of glass and a quartz crystal?  
b. Could a glass plate act as a quarter-wave plate? Why or why not? 

 

CREATING, MODELING, AND MEASURING ELLIPTICALLY POLARIZED LIGHT 

A general state of polarized light is often called elliptically polarized light because the polarization vector has a 
magnitude and direction that follows an elliptical pattern over time.  Two demonstrations on the Wolfram 
demonstrations website56  might help you visualize what is going on.  We can write this arbitrary polarization state 
in the following way: 

  𝜓 = 𝐸" Mcos 𝜃 𝑒
(/"

sin 𝜃	𝑒(/#
N (10) 

It turns out that only the difference between the two phases, 𝜙 = 𝜙# − 𝜙$, is responsible for the elliptical 
polarization state, so in this lab we will represent an arbitrary elliptical state as  

  𝜓′ = 𝐸" Mcos 𝜃 𝑒
(/

sin 𝜃
N (11) 

Question 15 What value(s) θ and φ correspond to linearly polarized light? Circularly polarized light?  

Question 16 Represent the quarter-wave plate matrix in Mathematica.  Use the representation to predict 
the outgoing state of light when the input polarization has an angle  

a. 0 degrees to the 𝒙4-axis. 
b. 30 degrees to the 𝒙4-axis. 
c. 90 degrees to the 𝒙4-axis. 
d. For the cases above, describe the polarization of the outgoing light  (linear, circular, 

elliptical) 

 

WEEK 1 GRAND CHALLENGE 

1. Design a scheme to measure the parameters of elliptically polarized light: 𝐸, 𝜃, and 𝜙 = 𝜙# − 𝜙$ 
2. Attempt to create circularly polarized light. 
3. Model systematic error sources and determine which ones are limiting your ability to produce circularly 

polarized light. 
4. Modify your experiment to create more pure circularly polarized light. 

The following set of questions should lead you through this process.  Half of your formal written or oral 
presentation will be explaining this experiment and your results. 



Question 17 
 

A measurement of the parameters of elliptical polarization, 𝜃 and  𝜙 = 𝜙# − 𝜙$ , using a 
rotatable polarizing filter. 

a. Predict the power transmitted through the polarizing filter as a function of the 
polarizing filter’s orientation, 𝜃10< for an arbitrary polarization (θ,	𝜙 ) state in Eq. 11.  
Mathematica’s Manipulate7 function may be helpful for seeing how the prediction 
changes as you vary 𝜃 and 𝜙. 

b. Use the predictive function as a fit function for real data.  A test data set is available 
on the CANVAS Lab  The polarization parameters used to generate the test data were 
𝜃 = 2.345, and 𝜙# − 𝜙$ = 1.07.  Note that your fit may look good, but return 
different parameters.  This could be for a few reasons: 

• Changing 𝜃 by 𝜋 only adds a minus sign to the electric field, which doesn’t 
change intensity measurements. 

• Changing 𝜃 or 𝜙 by 2𝜋 changes gives the exact same field, so adding 
multiples of 2𝜋 doesn’t change the measurement. 

• Changing 𝜃 → −𝜃 is okay if we also change 𝜙 → 𝜙 + 𝜋  (this also just 
changes the electric field by a minus sign) 

• Changing 𝜙 → −𝜙 also gives the same prediction, which is highly significant 
because it means this simple measurement cannot distinguish between left- 
and right-handed circular polarizations. 

 

Question 18 
 

Production of circularly polarized light using polarizing filters and quarter-wave plates. 
 
Figure 1 shows a setup which uses a quarter-wave plate to manipulate the polarization state of 
light. For two different angles of incident polarization (45 degrees and another of your 
choosing):  

a. Predict the elliptical polarization parameters after the quarter-wave plate, if the light 
incident on the plate has polarization parameters (𝜃(46	, 𝜙(46	). 

b. Predict the power transmitted through an analyzing polarizer placed after the quarter 
wave plate, as a function of its angle 𝜃10<. 

c. For what angle of incident polarization 𝜃(46 on the quarter wave plate do you get 
circularly polarized light exiting the plate? 

d. Take data for this situation. Use the model from 17a to fit for the parameters 𝜽 and 
𝝓 of the light incident on the analyzing polarizer to verify how close to circular your 
light is. 
  

Note: Make sure you consider how you are calibrating the zero of the angles, such as the 
incident polarization, the quarter-wave plate, and the analyzing polarizer. Clearly describe this 
in your notebook. 



Question 19 This question explores the systematic error effects that could limit your ability to produce 
circularly polarized light.   
 
In an ideal setup, when you aligned the input polarization at 45 degrees from the quarter-
wave plate’s axis, you would have created perfectly polarized light, and the power measured 
by the photodetector should not depend on the analyzing polarizer’s angle 𝜃34.  But you 
probably didn’t get perfectly polarized light. 
 
Among the possible idealizations to consider, three can be relaxed and accounted for using 
your model of polarized light. These idealizations are: 
 

1. The light incident upon the quarter-wave plate is perfectly linearly polarized (𝜙# −
𝜙$ = 0). 

2. The light incident upon the quarter-wave plate is exactly 45 degrees from the axis of 
the quarter-wave plate. 

3. The quarter-wave plate adds exactly a 𝜋 2⁄  phase shift between the fast and slow 
polarizations. 
 

Your computation model can predict the result of your measurement in the previous question 
when these idealizations are violated.  For these three idealizations determine the following: 
 

a. Predict how a small violation of the idealization would change the result. 
b. Can you distinguish between the three systematic error sources?  
c. Could this systematic error source account for non-ideal result? 
d. Is the violation of the idealization within tolerances on our ability to measure angles, 

or the specifications on the quarter-wave plate? 
e. Which error source, if any, is most likely? 

 

Question 20 Can you use your understanding of the systematic error sources to modify your setup to 
improve the circularity of the light?  How and why would you make changes? 

WEEK 2 

A BASIC MODEL FOR REFLECTION AT A DIELECTRIC INTERFACE 

In week 1 we developed a model for describing light that contained information about the polarization, but had no 
information about the direction of propagation, wavelength, beam profile, etc.  In week 2 we are going to study 
the reflection and transmission of polarization waves at an interface between two dielectrics.   

The general principles needed to model the wave propagation and reflection are 

1. Maxwell's wave equation given in Eq. (1):  ∇!𝑬##⃗ = 𝜇"𝜖"
%!𝑬>>⃗

%'!
 

2. Boundary conditions which need to be satisfied between to media 

a. 𝜖(𝑬##⃗ (,A = 𝜖'𝑬##⃗ ',A 
b. 𝑬##⃗ (,∥ = 𝑬##⃗ ',∥  The component of the electric field parallel (tangential) to the surface is continuous. 

c. 𝑩##⃗ (,A = 𝑩##⃗ ',A  The component of the magnetic field normal to surface is continuous. 

d. 𝑩##⃗ (,∥ 𝜇(q = 𝑩##⃗ ',∥ 𝜇'q  



In addition to the general principles we need to specify the specific situation where we will apply the general 
principles listed above.  The simplest and most idealized model makes the following assumptions: 

1. The interface between the two dielectrics is an infinite plane. 
2. The properties of the two dielectric materials are as follows: 

a. The dielectric permittivity in each material is uniform with values of 𝜖( for the incident wave, and 
𝜖' in the medium where the transmitted wave propagates.  

b. The magnetic permeability in the two materials is no different from vacuum, so 𝜇( = 𝜇' = 𝜇". 
3. The electromagnetic wave is an infinite plane wave with an wave vector 𝒌##⃗  which specifies the wavelength 

and direction of propagation. 

Using the general principles (the wave equation for 𝑬##⃗  and boundary conditions) in the specific idealized situation 
above, we can derive the following  reflection and transmission coefficients for the two polarizations field 
amplitudes. (see Hecht Optics Sec. 4.6) 

For the polarization normal to the plane of incidence (also called s-polarization) 

 𝑟A =
𝑛( cos 𝜃( − 𝑛' cos 𝜃'
𝑛( cos 𝜃( + 𝑛' cos 𝜃'	

	 (12) 

 𝑡A =
2𝑛( cos 𝜃(

𝑛( cos 𝜃( + 𝑛' cos 𝜃'	
 (13) 

For the polarization parallel to the plane of incidence (also called p-polarization) 

 𝑟∥ =
𝑛' cos 𝜃( − 𝑛( cos 𝜃'
𝑛' cos 𝜃( + 𝑛( cos 𝜃'	

	 (14) 

 𝑡∥ =
2𝑛( cos 𝜃(

𝑛' cos 𝜃( + 𝑛( cos 𝜃'	
 (15) 

Where the transmitted angle 𝜃' is given by Snell's law 

  𝑛' sin 𝜃' = 𝑛( sin 𝜃( (16) 

 

Question 21 
Pre-lab 
Math-Physics-
Data 
Connection 
 

Draw a diagram which explains the following quantities: 
a. Plane of incidence 
b. Electric field polarization normal to the plane of incidence 
c. Electric field polarization parallel to the plane of incidence 
d. 𝜃' 
e. 𝜃( 

The power reflection and transmission coefficients can be derived by considering the power that flows in and out 
of an area 𝐴 on the surface of the interface. In vacuum, the intensity of light 𝐼 is related to the electric field 
amplitude 𝐸" by 

 𝐼 =
𝑐𝜖"
2	
|𝐸"|! (17) 



 In a dielectric where the propagation speed is 𝑣C and the dielectric constant is 𝜖C, the intensity relates to the 
electric field by 

 𝐼 =
𝑣C𝜖C
2	

|𝐸C|! (18) 

The reflected power coefficient 𝑅 is the ratio of reflected and incident powers incident upon an area A on the 
surface of the interface.  It can be related to the amplitude reflection coefficient by 

 𝑅 =
𝑃2
𝑃(
=
𝐼2𝐴 cos 𝜃2
𝐼(𝐴 cos 𝜃(

=
|𝐸2|!

|𝐸(|!
= `

𝐸2
𝐸(
`
!

= |𝑟|! (19) 

where we made use of the fact that speed of propagation 𝑣, the dielectric constant 𝜖, and the angles of the 
incident and reflected beams, 𝜃( and 𝜃2, are equal. 

Similarly, the transmitted power coefficient 𝑇	is the ratio of transmitted and incident powers incident upon an area 
A on the surface of the interface.  It can be related to the amplitude transmission coefficient by 

 
 	

𝑇 =
𝑃'
𝑃(
=
𝐼'𝐴 cos 𝜃'
𝐼(𝐴 cos 𝜃(

=
𝑣'𝜖'|𝐸'|! cos 𝜃'
𝑣(𝜖(|𝐸(|! cos 𝜃(

=
𝑛'
𝑛(
`
𝐸'
𝐸(
`
! cos 𝜃'
cos 𝜃(

=
𝑛' cos 𝜃'
𝑛( cos 𝜃(

|𝑡|! 
(20) 

where we made use of the relation 𝜖D = 1 𝜇D𝑣D 	!⁄ , the relation 𝜇( = 𝜇' = 𝜇" for typical dielectrics, and 𝑛' 𝑛(⁄ =
𝑣( 𝑣'⁄  relates the velocity of propagation ratio to the index of refraction ratio. 

Question 22  
Math-Physics-
Data 
Connection 
 

Prediction of reflection and transmission coefficients (a.k.a “Fresnel equations”). 
a. Create a computational representation of this model of reflection and transmission at 

a dielectric interface.  In particular, code up functions for the four amplitude 
coefficients: 𝑟A, 𝑟∥, 𝑡A, and 𝑡∥, and the four power coefficients: 𝑅A, 𝑅∥, 𝑇A, and 𝑇∥.   

b. Use the functions in part (a) to make plots of four amplitude coefficients as a function 
of the incident angle 𝜃(. 

c. Use the functions in part (a) to make plots of the four power coefficients as a function 
of the incident angle 𝜃( . 

d. For unpolarized incident light, is there a difference in the power of the parallel and 
normal parts of the reflected light?  Can you imagine why polarized sunglasses might 
be useful if you are spending time on boat on a sunny day?  Would you prefer the 
glasses to block the light that is parallel to the surface of the water (i.e. perpendicular 
to the plane of incidence) or vice versa? 

 



Question 23 Take reflection and transmission coefficient data 
a. Design a procedure and apparatus to measure the transmission and reflection 

coefficients, 𝑅A, 𝑅∥, 𝑇A, and 𝑇∥, as a function of the incident angle.  Make sure your 
procedure includes both cases of measuring both air to Lucite, and Lucite to air 
reflection/transmission.  Figure 2 may help you get started. 

b. Draw a diagram showing the alignment of the Lucite, rotation state, and incident, 
reflected, and transmitted laser beams. 

c. In order to measure the four coefficients, you need to create incident light that is 
polarized parallel or perpendicular to the plane of incidence.  At the Brewster angle, 
when 𝜃( = arctan𝑛' 𝑛(⁄ , 𝑟∥ = 0, and the reflected light is pure s-polarized 
(perpendicular to plane of incidence).   

• Use this information to calibrate the alignment of the initial polarizer. 
d. Carry your procedure and quantitatively compare your results with the predictions 

you made in the pre-lab question.   
• Which data sets had the best agreement?  Which had the worst? 

 

 

Figure 2: One option for the apparatus used in testing the Fresnel equations.  Please ignore the quarter-wave plate  
shown in the picture on the right after the first rotatable polarizer. 

LIMITATIONS AND REFINEMENT OF THE FRESNEL REFLECTION MODEL 

In the model of reflection of light from a dielectric interface developed in this lab, many idealizations are made.  
These include: 

1. The incident wave is a plane wave. 
2. The medium is uniform. 
3. The interface is an infinite plane. 
4. The reflection and transmission coefficients only describe the electric fields very close to the interface. 

The first assumption, that the incident wave is a plane wave, is only approximately true.  We know the laser is well 
approximated by a Gaussian beam which is composed of a spread of wave-vectors  𝒌##⃗ .  Although there are 



measurable differences between a plane wave and a Gaussian beam and a plane wave, we are not going to explore 
this further because it doesn't involve polarization. 

The fourth assumption is that the measurement of transmitted and reflected power are only made right at the 
dielectric interface, but clearly our photodiode is positioned away from the interface.   

Hopefully, the next two questions demonstrate that it is important to be explicit about the assumptions in our 
predictive models, because it gives us hints as to where our experimental results might deviate from our 
predictions, and how we can refine the models to improve the agreements between prediction and experiement. 

Question 24 Absorption and scattering in the Lucite 
a. What effect would absorption and or scattering have in your measurements of the 

transmission and reflection coefficients?  Which of the eight predictions would 
change? 

b. What effect would the reflection at the curved dielectric interface have on your 
measurements?  Which of the eight predictions would change? 

c. How could these deviations be included in the predictions as a fit parameter?  Should 
absorption, scattering, or the second reflection cause an effect which depends on 
angle? 

d. Re-plot your data and prediction using the revised model.  Do you get better 
agreement? 

 
Question 25 Birefringence in Lucite: 

Quick test of the transmitted beam: 
 

Stress in plastics like Lucite cause birefringence, which is the same property of quartz that 
allows us to engineer quarter-wave plates.  However, the birefringence in Lucite is not 
easy to control, and will vary from sample to sample, and may cause large changes in the 
transmitted polarization. 

 
a. Using simple physics reasoning, for a uniform dielectric medium, how should the 

incident and transmitted polarization states relate to each other at normal incidence, 
𝜃(46 = 0? 

b. Experimentally compare the polarization state of the incident and transmitted beam.  
How much did it change? 

c. In Question 19 you measured 8 sets of data for the Air-to-Lucite or Lucite-to-Air 
reflection and transmission coefficients (𝑅∥, 𝑅A, 𝑇∥, and 𝑇A ).  Knowing that 
birefringence in the Lucite can change the polarization state of the transmitted beam, 
which of those eight measurements may not be reliable?  Why?  

 

GRAND CHALLENGE: ELLIPSOMETRY OF LUCITE 

Ellipsometry is a technique used to characterize the thickness and index of refraction of thin films.  It is widely used 
in industrial and academic research.  The technique also involves almost everything you have learned from the lab 



so far, in particular your ability to measure the parameters of an arbitrary polarization state, and the experimental 
setup for measuring reflection coefficients vs angle. 

 

Figure 3: Basic ellipsometry Setup.  Modified from http://en.wikipedia.org/wiki/File:Ellipsometry_setup.svg 

 
A standard ellipsometry setup is shown in Figure 3.  The standard measurement in ellipsometry is to measure the 
magnitude and phase of the ratio of the parallel and perpendicular polarization reflection coefficients, i.e., 

 
𝜌 =

𝑟∥
𝑟A
= tan(Ψ)𝑒(E 

 
(21) 

Question 26 Reflect: You already took measured reflection coefficients vs. angle of incidence for the air-
Lucite interface.  Is this data sufficient to determine Ψ and Δ?  Why or why not? 
 

Question 27 For the air-Lucite reflection studied in the previous section, use your Fresnel model to predict 
Ψ and Δ as a function of the angle of incidence 𝜃(. 
 

The full ellipsometry measurement uses the Jones formalism derived earlier, in particular the measurement of an 
arbitrary elliptical polarization state.  However, instead of choosing 𝒙4 and 𝒚4 as two orthogonal directions for 
polarization we can use the orthogonal and parallel polarizations to the plane of incidence.  The unit vectors for 
these two polarizations can be represented as vectors: 

  𝒆+A → P10S (22) 

  𝒆+∥ → P01S (23) 

 

 

Question 28 a. If the incident light is polarized 45 degrees from the parallel polarization, what is the 
Jones vector for the reflected light of the light in terms of 𝑟∥ and 𝑟A? 

b. Using your method from week 1 of determining arbitrary polarizations, you can 
measure the parameters   𝐸2FG<,HI, 𝜃, and 𝜙 for the arbitrary elliptical state of the 



reflected light that was polarized at 45 degrees from parallel polarization 𝐸2FG<,HI =

Mcos 𝜃 𝑒
(/

sin 𝜃
N.  Find a mathematical relationship between the elliptical polarization 

coefficients 𝜃 and 𝜙 and the standard ellipsometry coefficients Ψ and Δ defined in 
Equation 21. 

 

Question 29 Measure Ψ and Δ as a function of the angle of incidence and compare with your predictions.  
The standard procedure for ellipsometry data is to determine the index of refraction (and 
thickness, typically) of the sample by finding the set of model parameters that best matches 
the data.  Carry out this analysis for your Lucite data.   
 

If you complete the ellipsometry of Lucite, then congratulations are in order!  You have accomplished many 
scientific tasks, such as developing accurate predictive models, calibrating measurement devices, assembling an 
apparatus, and carrying out sophisticated data analysis.  A natural next step would be measuring thin film layers, 
which employs similar experimental techniques, but requires more complicated models of reflection from the 
multilayered surface. 

PROJECT IDEAS 

1. Build an ellipsometer.  First, use it to measure the index of refraction of a substrate.  Then use it to 
measure the thickness and index of refraction of a thin film.  What is the thinnest film you could measure 
with this method?  Can you measure films thinner than the wavelength of light?  What are the 
performance specifications for measuring Δ and Ψ? 

2. Extending the Jones Calculus to include unpolarized light.  One of the primary limitations of the Jones 
representation of polarization is that it is only valid for a general state of polarized light, but cannot 
describe unpolarized, or partially polarized light.  This project would extend the model to include partially 
polarized light, and to create ways to measure the polarization state.  It could also explore the connection 
between describing the polarization of light and the quantum mechanical formalism of a spin ½ system. 

3. Developing a physical model of unpolarized light  This project focuses on modeling unpolarized light as 
an electromagnetic wave with a randomly fluctuating polarization direction.  This project will go in depth 
into modeling and measuring statistical properties of light.  Possible directions include measuring both the 
coherence time of a single polarization, and the cross-correlation time between two orthogonal 
polarization states of an unpolarized laser.  This can be done without fast electronics, but requires an 
understanding of interference.  Using information learned from these measurements, design a 
measurement to directly measure polarization fluctuations of the laser.  Especially consider the relevant 
performance specifications of the detectors and electronics. 

4. Polarization behavior of liquid crystals.  Experimentally demonstrate that a liquid crystal can act as a 
variable retardance wave plate which is controllable by the applied voltage.  Use the liquid crystal to 
phase modulate and amplitude modulate your light, and create a detection scheme for phase and 
amplitude modulated light.  Experimentally test the performance specs of your modulator/demodulator.  
Encode and decode a fun message or music as a proof of principle demonstration. 

5. What happens to the transmitted beam when the angle is past the critical angle and the reflection goes 
to 100%?   There is still an electric field where the transmitted beam would be, but it has an exponentially 
decaying amplitude.  Model this exponentially decaying field, called an evanescent wave.  Model the 
coupling of the evanescent wave to some other optical device, like another chunk of glass, or an optical 
fiber.    Measure the coupling of the evanescent field to this optical device as a function of angle of 



incidence and separation distance of the device from the interface of reflection.  Demonstrate 
quantitative agreement between your model and measurements. 
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